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Abstract

Background—Industrial discharges of perfluorooctanoic acid (PFOA) to the Ohio River, 

contaminating water systems near Parkersburg, WV, were previously associated with nearby 

residents’ serum PFOA concentrations above US general population medians. Ohio River PFOA 

concentrations downstream are elevated, suggesting Mid-Ohio River Valley residents are exposed 

through drinking water.

Objectives—Quantify PFOA and 10 other per- and polyfluoroalkyl substances (PFAS) in Mid-

Ohio River Valley resident sera collected between 1991 and 2013 and determine whether the Ohio 

River and Ohio River Aquifer are exposure sources.

Methods—We measured eleven PFAS in 1608 sera from 931 participants. Serum PFOA 

concentration and water source associations were assessed using linear mixed-effects models. We 

estimated between-sample serum PFOA using one-compartment pharmacokinetics for participants 

with multiple samples.

Results—In serum samples collected as early as 1991, PFOA (median=7.6ng/mL) was detected 

in 99.9% of sera; 47% had concentrations greater than US population 95th percentiles. Five other 

PFAS were detected in greater than 82% of samples; median other PFAS concentrations were 

similar to the US general population. Serum PFOA was significantly associated with water source, 

sampling year, age at sampling, tap water consumption, pregnancy, gravidity and breastfeeding. 

Serum PFOA was 40–60% lower with granular activated carbon (GAC) use. Repeated 

measurements and pharmacokinetics suggest serum PFOA peaked 2000–2006 for participants 
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using water without GAC treatment; where GAC was used, serum PFOA concentrations decreased 

from 1991 to 2012.

Conclusions—Mid-Ohio River Valley residents appear to have PFOA, but not other PFAS, 

serum concentrations above US population levels. Drinking water from the Ohio River and Ohio 

River Aquifer, primarily contaminated by industrial discharges 209–666 kilometers upstream, is 

likely the primary exposure source. GAC treatment of drinking water mitigates, but does not 

eliminate, PFOA exposure.

Abstract
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Introduction

Perfluoroalkyl and polyfluoroalkyl substances (PFAS) are industrial chemicals used for 

stain, stick- and water-resistant coatings, food contact papers, firefighting foams, metal 

plating, semiconductors and photographics/photolithographics (Buck et al., 2011; Lau et al., 

2007). Perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) are the 

most widely studied PFAS. 2,610–21,400 tons of carboxyl PFAS were emitted to the 

environment 1951–2015; up to 6420 more will be emitted by 2030 (Wang et al., 2014). US 

PFAS manufacturers reduced PFOA emissions 91–100% by 2014 (United States 

Environmental Protection Agency, 2015a), but production continues internationally.

Since 1999–2000, US population serum PFAS concentrations, measured by the National 

Health and Nutrition Examination Survey (NHANES), have steadily decreased; median 

2011–2012 concentrations were 2.08 ng/mL (PFOA) and 6.53 ng/mL (PFOS) (CDC, 2015). 

Food, drinking water and house dust are major exposure sources (D’Hollander et al., 2010). 

Children are also exposed during pregnancy and through breastfeeding (Liu et al., 2011). 

Industrial PFAS discharges can contaminate municipal source waters (Holzer et al., 2008), 

and contaminated water may be the most important environmental PFAS exposure source 

(Ericson et al., 2008).

Mid-Ohio River Valley (Huntington, WV to Louisville, KY, Figure 1) residents may be 

exposed to PFAS, especially PFOA, through contaminated drinking water from the Ohio 
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River or Ohio River Aquifer. Serum PFOA concentrations above NHANES medians were 

reported in the C-8 Health Project cohort in Parkersburg, WV (Emmett et al., 2006), and two 

Cincinnati cohorts, the Breast Cancer and the Environment Research Project (BCERP) 

Puberty Study (Pinney et al., 2014), and the Health Outcomes and Measures of the 

Environment (HOME) study (Kato et al., 2014; Braun et al., 2016). Serum PFOA 

concentrations were significantly associated with water utility (Pinney et al., 2014) or Ohio 

River Aquifer use (Emmett et al., 2006). The Ohio River Aquifer in the C-8 study area was 

contaminated by industrial PFOA discharges to the Ohio River (Paustenbach et al., 2007). 

September 2009 downstream Ohio River PFOA concentrations were 9.2–19.1ng/L; 

historical PFOA concentrations were higher (Paustenbach et al., 2007). PFAS exposure may 

be reduced by granular activated carbon filtration (GAC). Some Ohio River Valley utilities 

use GAC, and GAC has reduced PFOA concentrations in other municipal water systems 

(Rahman et al., 2014). GAC use was associated with lower resident serum PFOA 

concentrations, although some were still above US general population medians (Pinney et 

al., 2014; Bartell et al., 2010).

To assess exposure to PFAS in Mid-Ohio River Valley residents, we measured the 

concentrations of 11 different PFAS in sera collected between 1991 and 2013. PFOA 

concentrations between serum measurements were estimated for participants with multiple 

serum samples using pharmacokinetic models. We evaluated PFOA and water source 

associations using mixed-effects statistical models to determine whether the Ohio River and 

Ohio River Aquifer are significant PFOA exposure sources for residents of the Mid-Ohio 

River Valley.

Materials and Methods

Study Population

This analysis included participants from the Fernald Community Cohort (FCC), Ohio River 

Valley (ORV) Study and BCERP Puberty Study Cincinnati site cohort. FCC adult 

participants were recruited from residents living <8km from a uranium plant 32 km 

northwest of Cincinnati, primarily between 1990–1994; follow-up continued through 2008. 

Eligibility, design and participant characteristics were described previously (Wones et al., 

2009; FCC website). Cohort members were eligible for inclusion in this study if they lived 

in zip codes bordering the Ohio River from Gallipolis, OH to Southeast Indiana sometime 

between 1980 and 2008 (Figure 1). An additional 20 members of the remaining FCC cohort 

were included because they had nuclear family members living between Parkersburg, WV 

and Cincinnati, OH during those years. A total of 450 FCC cohort members were contacted 

in 2011–2014 for additional residential history and beverage consumption data collection.

We recruited ORV participants between 2009 and 2012 from medical practices in 

Huntington, Portsmouth, OH, and Cincinnati suburbs; some family members of BCERP 

participants were included. Participants were eligible if they had lived in the area for 2 or 

more years and were aged 2–85 years. ORV participants were not followed-up. BCERP 

participants were recruited as girls aged 6–8 years from Greater Cincinnati schools and 

Breast Cancer Registry of Greater Cincinnati participant families between 2004 and 2007. 

Follow-up continued until 2015. Study design and participant characteristics were previously 
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described (Biro et al., 2010). Institutional review boards (IRB) at the University of 

Cincinnati and Cincinnati Children’s Hospital Medical Center approved study protocols. 

Participant/parent consent and child assent were obtained. The Centers for Disease Control 

and Prevention (CDC) IRB approved the analysis of serum specimens with no personal 

identifiers for BCERP. For FCC and ORV, CDC laboratory involvement did not constitute 

engagement in human subjects research because samples were completely de-identified.

Serum Samples and Analysis

We obtained serum at baseline, second and/or final medical exam from FCC participants 

(1991–2008), at recruitment for ORV participants (2009–2012), and annually for BCERP 

participants (2005–2013) using protocols and materials provided by CDC. Sera were stored 

at −80°C unti l analysis. All available samples for FCC and ORV participants were analyzed. 

All BCERP participants with blood samples had baseline samples measured. Subsequent 

samples from BCERP participants were analyzed if available.

CDC staff measured serum PFAS concentrations at various times between 2005 and 2014 

using published methods (Kato et al., 2011; Kuklenyik et al., 2005). CDC measured 2-(N-

ethyl-perfluorooctane sulfonamido) acetic acid (Et-PFOSA-AcOH or EtFOSAA), 2-(N-

methyl perfluorooctane sulfonamido) acetic acid (Me-PFOSA-AcOH or MeFOSAA), 

perfluorohexane sulfonic acid (PFHxS) and perfluorononanoic acid (PFNA) in all samples. 

CDC measured total PFOA and total PFOS in ORV, FCC and baseline BCERP samples. 

Linear (n-PFOA) and non-linear (branched) PFOA and linear (n-PFOS), methyl (Σm-PFOS) 

and dimethyl (Σm2-PFOS) PFOS isomer concentrations were reported separately for non-

baseline BCERP samples (collected 2006–2013); we calculated total PFOA and PFOS 

concentrations as the sums of their respective linear and branched isomers. 

Perfluorodecanoic acid (PFDeA) was not measured in the first 82 BCERP samples. 

Perfluorobutane sulfonic acid (PFBuS), perfluorododecanoic acid (PFDoA), 

perfluoroundecanoic acid (PFUA) and perfluorooctane sulfonamide (PFOSA or FOSAA) 

were not measured in all samples because more than 80% of results were below limits of 

detection (LOD) in initial analyses.

Covariates

Questionnaires, including demographics, beverage consumption, residential, medical and 

reproductive histories, were administered annually to adult participants and parents of 

minors (BCERP and FCC), or at recruitment (ORV). FCC participants answered additional 

residential history and beverage consumption questions when recontacted. Participants used 

glassware or life-size illustrations to estimate beverage consumption. FCC participants 

received medical exams every two (1997–2008) or three years (1990–1996). We collected 

anthropometrics at recruitment for ORV participants. Physical exams were administered 

semi-annually to BCERP participants until 2010, then annually. Calibrated stadiometers and 

scales were used for anthropometrics. We obtained participants’ residential histories from 

1980 (those born before 1980) or birth (those born after) by interview (BCERC, ORV) or 

mailed questionnaire (FCC). We identified water utilities, sources, service areas, service 

dates and GAC use from 1980 to 2012 through utility and public record searches, resulting 

in 221 water source-time zones, served by 114 utilities, utilizing 23 water sources (Pinney et 
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al., 2014). Water sources, durations and GAC treatment were identified for each residential 

address of each participant.

Statistical Analysis

Statistical analyses were conducted with SAS v9.2 (SAS Institute, Cary NC). PFAS 

concentrations were non-normal (skewness: 2.29–9.44) and log-transformed for analyses; 

LOD/√2 was imputed for values below LOD (Hornung and Reed, 1990). We calculated 

sample-weighted Pearson correlations and descriptive statistics for PFAS and water sources, 

and then estimated serum PFOA-covariate associations using two linear mixed-effects 

models with random subject effects (PROC MIXED).

Model 1 categorized participants’ water source at sample collection in eight groups: Ohio 

River in Huntington, Ashland/Ironton/Portsmouth, Northern Kentucky and Cincinnati, Ohio 

River Aquifer between Huntington-Cincinnati and Cincinnati-Louisville, the Great Miami 

Aquifer and all other water sources. Model 2 used participants’ cumulative years the Ohio 

River, with and without GAC, and Ohio River Aquifer were municipal water sources. 

Sample collection year, sex, age at sample collection, daily tap water consumption, bottled 

water use, water filter use, pregnancy status, reproductive history and breastfeeding were 

covariates. Race/ethnicity was not included in analyses because 93% of non-Caucasians 

used the same water utility. Water source was always included in regression models; other 

covariates were retained if significant or caused a 15% or greater change in water source 

effect estimates (backwards/stepwise elimination). Linear regression analyses for other 

PFAS with 80% or more results above the LOD were conducted using significant terms from 

PFOA models as covariates, similar to Pinney et al. (2014). We approximated model r2 as 

variance change between full/final and intercept-only models; intercept model random 

variance was constrained to that in full/final models.

Pharmacokinetics

Serum PFOA concentrations between samples were estimated using a one-compartment 

(serum) pharmacokinetic model for 508 participants from the FCC and BCERP cohorts with 

multiple samples (Thompson et al., 2010). Using this model, we examined two exposure 

scenarios. In Scenario 1, we assumed Ohio River PFOA concentrations from 1991 to 2013 

were the same as those measured in September 2009 (Emery et al., 2010). In Scenario 2, we 

estimated annual PFOA Ohio River concentrations for 1991 to 2013 by linearly-

interpolating between reported concentrations, assuming constant ratios between regions 

(Table S1). For both scenarios, we assumed aquifer-exchange or GAC treatment reduced 

PFOA concentrations by 50% and other source waters were uncontaminated. We used 

participant-reported tap water consumption for daily intake, and we assumed body weight 

changed linearly between measurements, to estimate PFOA dose from water utility PFOA 

concentration estimates. For both scenarios, non-water PFOA dose was estimated from 

NHANES median PFOA serum concentrations (CDC, 2015), assuming steady state. 

Because reported half-life estimates for PFOA vary widely, we conducted a sensitivity 

analysis; we calculated PFOA elimination constants using half-life estimates from 1.7 to 3.8 

years, which cover estimates from the literature (Fu et al., 2016; Bartell et al., 2010; Brede et 

al., 2010; Olsen et al., 2007). We estimated model fit using Wilcoxon rank-sum tests on 
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median difference, weighted kappa (κ) for PFOA quartile and interclass-correlations (ICCs), 

comparing predicted to subsequent measured serum PFOA concentration. Model fit statistics 

were calculated for all estimates, and separately by starting PFOA concentration (above/

below the mean), and by cohort (FCC vs BCERP).

Results

Descriptive characteristics

931/1201 participants provided data (Table 1). 1608 separate serum samples were analyzed. 

Serum was collected in Huntington 2009–2010, Portsmouth 2009–2011, and Greater 

Cincinnati, and regions between Portsmouth and Louisville, 1991–2013. Participants were 

15% African-American, 2% Hispanic, 1% Asian and 82% Caucasian. FCC participants were 

exclusively Caucasian; ORV participants were 96% Caucasian. FCC and ORV cohorts had 

similar ages at sample collection, tap water consumption, proportions of women ever 

pregnant and breastfeeding, mean gravidity and children breastfed per mother. ORV children 

were breastfed longer than BCERP participants. We identified water sources for 95% of 

participants’ addresses. 72.5% of participants used the Ohio River and 13.5% used the Ohio 

River Aquifer. Of those using the Ohio River, 37.2% always had GAC filtration, 44.7% 

never did, and 18.1% had GAC for some of the time their municipal utility used the Ohio 

River as a water source. Mean Ohio River water use was 7.5 years (range 0–32 years); mean 

Ohio River Aquifer water use was 1.2 years (range 0–32 years).

Serum PFAS concentrations

Unless indicated, serum PFOS and serum PFOA refer to total concentrations. PFHxS, 

PFOA, PFOS and PFNA were detected in greater than 99% of samples; Me-PFOSA-AcOH 

and PFDeA were detected in more than 82% (Table S2; Figure 2). PFBuS and PFDoA were 

never detected. PFOA and PFOS isomers were measured in 350/1608 serum samples; n-

PFOA was detected in 99.7% and branched PFOA in 44.6%. Mean serum PFOA was 97% 

linear, 3% branched. Mean serum PFOS was 71% n-PFOS, 28% Σm-PFOS, and 1% Σm2-

PFOS.

Serum PFOA was highest in samples collected 1991–1993 (median=13.8 ng/mL), and 

decreased for each sample year group to 2011–2013 (median=4.3 ng/mL). Similar decreases 

were observed for n-PFOA (median=5.6 ng/mL in 2007–2008; median=2.6 ng/mL in 2011–

2013). Median serum PFOS was highest 1994–1996 (32.2 ng/mL), decreasing to 6.3 ng/mL 

in 2011–2013; n-PFOS, Σm-PFOS and Σm2-PFOS concentrations decreased proportionately. 

For participants with multiple samples, median serum concentrations for measured PFAS 

decreased between samples (Table S3); median between-sample total PFOA decrease was 

2.3ng/mL (29%) and median total PFOS decrease was 4.9ng/mL (37%) over a mean 

between-sample interval of 4.5 years.

Weighted PFOA-PFAS Pearson correlations (Table S4) were significant (p>0.05) for all but 

PFOA-PFHxS and PFOA-PFUA. These correlations were moderate (PFOS) or weak (Et-

PFOSA-AcOH, Me-PFOSA-AcOH, PFOSA, PFHxS, PFNA, PFDeA, PFUA); all were less 

than 0.5. Total and n-PFOA, total and n-PFOS, total and Σm-PFOS, and n-PFOS and Σm-
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PFOS were strongly correlated. Total PFOA-branched PFOA and n-PFOA-branched PFOA 

concentrations were weakly correlated.

Serum PFOA determinants

Water source was statistically significant in both PFOA regression models (Table 2). Final 

models explained 44–47% of serum PFOA variation (r2: 0.44–0.47). In Model 1, covariate-

adjusted geometric mean (GM) serum PFOA was significantly higher for participants using 

Ohio River water in Huntington (8.9 ng/mL), Ashland, KY to Portsmouth (12.7 ng/mL), and 

Northern Kentucky Cincinnati suburbs (10.4 ng/mL), but not Cincinnati itself (6.0 ng/mL), 

than non-Ohio River water sources (5.6 ng/mL). Serum PFOA was also significantly 

elevated for participants using the Ohio River Aquifer between Huntington and Cincinnati 

(GM=8.0 ng/mL), but not between Cincinnati and Louisville (GM=4.4 ng/mL). In Model 2, 

serum PFOA concentration significantly increased with each year the Ohio River or Ohio 

River aquifer was the municipal water source.

Serum PFOA declined with sample year (linear trend p<0.0001) in both models. Covariate-

adjusted GM serum PFOA was highest in samples drawn 1991–1993 (11.6/12.8 ng/mL) and 

lowest 2011–2013 (3.3/3.0 ng/mL) for Models 1 and 2, respectively. Water source and 

sample year interactions in Model 1 (p<0.0001) revealed different temporal trends by region 

(Figure 3). Serum PFOA was highest for participants using Cincinnati Ohio River water 

1991–1993 (GM=16.4 ng/mL) and declined subsequently; serum PFOA increased in 

participants using Northern Kentucky Ohio River water from 1991–1993 (GM=13.5 ng/mL) 

to 2001–2006 (GM=16.2 ng/mL) before declining. Serum PFOA in participants using the 

Ohio River Aquifer was constant 1991–2006 before declining 2007–2010. Serum PFOA for 

participants using the Great Miami Aquifer or other water sources was highest in 1991–1993 

and declined throughout.

Pregnancy, breastfeeding and gravidity were significantly inversely associated with serum 

PFOA in both models. Serum PFOA significantly increased with age and tap water 

consumption. Serum PFOA was significantly greater in males than females in univariate 

models (p<0.0001), but not multivariate analyses. Bottled water consumption and water 

filter use were non-significantly associated with serum PFOA.

We conducted linear regression analyses of other PFAS with more than 80% above LOD 

using both models. Water source was significantly associated with Me-PFOSA-AcOH, 

PFHxS, total PFOS and PFNA, but not PFDeA (Table S5). Adjusted serum concentrations of 

Me-PFOSA-AcOH, PFHxS, PFNA and PFDeA did not differ widely across regions 

(maximum difference 0.7ng/mL) (Table S7). Total PFOS varied between Huntington, WV 

and other regions (maximum difference 4.3ng/mL), but other adjusted between-region total 

PFOS differences were small. In Model 2 (Table S6), cumulative Ohio River water years 

without GAC was significantly associated with increasing total serum PFOS and PFNA, but 

not Me-PFOSA-AcOH, PFHxS, or PFDeA. Cumulative Ohio River water years with GAC 

was associated with significantly decreasing serum PFHxS and total PFOS. Effect estimates 

for cumulative Ohio River water years with GAC were lower than those for cumulative Ohio 

River water years without GAC.
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Pharmacokinetics

We estimated serum PFOA between measured concentrations for 508 FCC and BCERP 

study participants with multiple samples (Figure S1). Overall, Scenario 2 and elimination 

constants based on a 3.8-year half-life best replicated measured serum concentrations (Table 

S8). When we stratified model fit by starting serum PFOA concentration (>12.9 ng/mL vs 

≤12.9 ng/mL), Scenario 2 and a 3.8-year was the best fit for higher starting PFOA 

concentrations, while Scenario 1 and a 3.8-yr half-life was a better fit for lower starting 

PFOA concentrations (Table S9). Similar fit differences were present when stratified by 

cohort; Scenario 2 and a 3.8-year half-life better fit FCC participants, while Scenario 1 and a 

3.8-yr half-life better fit BCERP participants’ measured serum concentrations (Table S10). 

Model fit improved as estimated half-lives increased from 1.7 years to 3.8 years under both 

scenarios, and across all strata. Under Scenario 1, predicted serum PFOA was highest in 

1991 and decreased throughout the study period. Under Scenario 2, predicted GM serum 

PFOA increased through the 1990s, peaking in 2000/2001 (Figure S1).

Discussion

To our knowledge, this is the first study to report on serum concentrations of PFOA in 

samples obtained as early as 1991, with water supply source information for each study 

participant. However, earlier publications noted the presence of organic fluorinated 

compounds in human plasma. Organic fluorinated compounds were noted in human plasma 

in blood bank samples collected from 106 persons living in five different US cities in a 1976 

publication, with speculation that they originated from an environmental source. The organic 

fluorine concentrations in plasma (1.35 µM or 0.025 ppm) were not related to the amount of 

fluoride in the water supply (Guy et al., 1976). The dominant peak in silica acid column 

chromatography showed a “nmr pattern consistent with a derivative of perfluoroinated 

octanoic acid” (Taves et al., 1976). In 1981, Belisle (1981) reported on finding trace amounts 

of organic fluorine in 8 samples of human blood obtained from donors in a Chinese rural 

commune, very unlikely to have exposure to industrial sources of fluorochemicals, but lower 

than the amounts found in persons living in more urban areas. They also noted that the 

analytic method may have introduced the organic compounds.

Median serum PFOS (12.4 ng/mL), PFDeA (0.2 ng/mL), PFHxS (2.8 ng/mL), PFNA (1.0 

ng/mL) and Me-PFOSA-AcOH (0.5 ng/mL) concentrations in our participants were 

comparable to median NHANES concentrations. Median serum PFOA concentration (7.6 

ng/mL) was greater than NHANES, and individual serum PFOA concentrations were greater 

than corresponding NHANES 95th percentiles for 47% of participants. Residents’ PFOA 

serum concentrations were lower than in participants of the C-8 study in 2005–2006 (28.8 

ng/mL) (Frisbee et al., 2009), comparable to those in the baseline (2005–2007) BCERP 

Cincinnati-site participant subset of this cohort we previously reported (6.4 ng/mL) (Pinney 

et al., 2014), and greater than HOME participants 2003–2006 (3.4–5.5 ng/mL) (Kato et al., 

2014; Braun et al., 2016). These findings suggest Mid-Ohio River Valley residents were 

exposed to PFOA, but not the other PFAS we measured, above background levels. However, 

additional PFAS continue to be identified, and these may become more environmentally 
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relevant as PFOA and PFOS are phased out and decrease in human serum (Newton et al., 

2017); exposure to these PFAS is unknown in our participants.

While overall serum PFOA levels decreased with time in our population, we identified 

distinct temporal trends across regions; these may be explained by sourcewater and drinking 

water treatment technology differences. Residents using the Great Miami Aquifer and other 

water sources show a gradual decrease in PFOA similar to that identified in NHANES 

surveys (CDC, 2015). This suggests that PFOA contamination in these waters was minimal, 

and that their PFOA exposures decreased as PFOA levels in other sources, most likely food 

and house dusts, decreased. Both regions served by the Ohio River Aquifer show a relatively 

flat trend in serum PFOA in the 1990s, before decreasing in the mid-to-late 2000s. This 

suggests that the natural filtration of the aquifer reduced drinking water concentrations 

enough that residents reached steady-state serum concentrations, but that overall exposures 

were higher than the US general population, and that an aquifer’s natural filtration is less 

effective at removing PFOA than other treatment technologies. The most striking difference 

in temporal trend is between Greater Cincinnati and Northern Kentucky. Because both 

utilities use the Ohio River as a water source at the same point along the river, though 

Northern Kentucky also draws on the Licking River, we believe drinking water treatment 

explains this difference. Cincinnati began using GAC in 1992 (Westerhoff et al., 2009), 

while Northern Kentucky did not until June 2012, after all samples from Northern Kentucky 

residents were collected. GAC treatment may explain why Cincinnati participants’ serum 

PFOA concentration decreased during the 1990s, while those in Northern Kentucky 

residents rose. GAC use may also explain the differences in serum PFOA between 

Huntington, WV and Portsmouth, OH; Huntington, WV began using GAC in 1981 (Culp et 

al., 1981), while Portsmouth, OH does not.

Overall, GAC filtration or aquifer recharge decreased adjusted mean serum PFOA 

concentration 4 ng/mL (Model 1), while serum PFOA increases per year were 0.19–0.21 

ng/mL lower than they would have been absent GAC (Model 2). These reductions were 40–

60% of estimated serum PFOA concentrations. C-8 Project participants had similar 

reductions in their serum PFOA concentrations after GAC installation (Bartell et al., 2010). 

We also saw reductions in serum concentrations of other PFAS with GAC treatment; 

however, only PFOS saw a reduction in serum concentrations from GAC use (0.16 ng/mL) 

comparable to those observed with PFOA. This may be a result of lower sourcewater 

concentrations of other PFAS and not less efficacy for GAC. While GAC filtration did not 

reduce PFOA exposure to background level, it did mitigate PFOA exposure through drinking 

water.

Pharmacokinetic analyses under model criteria with the best fit for the entire population 

(Scenario 2 and PFOA elimination coefficients based on a 3.8yr half-life) indicate that GM 

serum PFOA concentrations in participants with multiple serum samples increased from 

1991 to 2001, then declined to 2013. Under conditions where estimated drinking water 

PFOA concentrations were increasing, we saw very little variation in GM serum PFOA 

across all the half-lives we investigated. For both low initial PFOA exposure and the BCERP 

cohort, Scenario 1 (constant PFOA water concentrations) was a better fit than time-varying 

PFOA water concentrations (Scenario 2). Both the BCERP cohort and participants with 
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lower starting PFOA had samples collected later than those in the FCC cohort or higher 

initial PFOA; therefore, Scenario 1 being a better fit may indicate that PFOA concentrations 

decreased rapidly between 2005 and 2009, or did not decrease as rapidly as we estimated 

after 2009. A 3.8-year half-life being the best fit in our pharmacokinetic analyses appears to 

contradict recent studies, which found the PFOA half-life to be 1.5–2.1 years shorter (Fu et 

al, 2016; Bartell et al. 2010). However, half-life studies where participants are still exposed 

to PFOA may result in a higher apparent half-life if all sources of PFOA are not properly 

accounted for (Russell et al., 2015). Because we did not have individual estimates of PFOA 

exposure through non-water sources, and used present drinking water consumption for past 

intake where necessary, the longer half-life may be accounting for errors in dose estimation.

Serum PFOA was significantly associated with water source, year sample collected, age at 

sample collection, tap water consumption, pregnancy, gravidity and breastfeeding in 

regression models. Although males have higher median serum PFOA concentrations than 

females in the general population (2.3ng/mL vs. 1.8 ng/mL in 2011–2012) (CDC, 2015) and 

sex was highly significant in our univariate models, sex dropped out when models included 

pregnancy, reproductive history and breastfeeding. Maternal PFOA decreases associated 

with pregnancy, gravidity and breastfeeding may explain some of the observed sex 

differences (Liu et al., 2011). While not assessed in our study, menstruation may account for 

some of the remaining difference in serum PFOA concentrations between males and females 

(Lorber et al., 2015).

Significant associations between serum PFOA and tap water consumption, the Ohio River 

and Ohio River Aquifer strongly suggest drinking water is a predominant PFOA exposure 

source in these study populations. After covariate-adjustment, each additional liter of tap 

water consumed daily increased serum PFOA 0.17 ng/mL. Each additional year drinking 

Ohio River water treated with GAC increased serum PFOA 0.13 ng/mL, while each 

additional year drinking Ohio River water without GAC increased serum PFOA 0.34 ng/mL; 

one additional year drinking Ohio River Aquifer water increased serum PFOA 0.15 ng/mL. 

These associations point to drinking water as a major exposure source for our study 

participants.

Inter-PFAS correlations also suggest that drinking water is a major PFOA exposure source. 

Such correlations are strong in the general population (e.g., NHANES; PFOA-PFOS ρ=0.66) 

(Calafat et al., 2007), and where the primary PFAS source is food (PFOA-PFOS ρ=0.54) (Ji 

et al., 2012). Conversely, correlations are weaker for populations exposed to PFOA through 

drinking water: PFOA-PFOS ρ=0.30 in C-8 study participants (Frisbee et al., 2009), and 

0.11–0.32 in Arnsberg, Germany (Holzer et al., 2008). Inter- PFAS correlations in our study 

population, especially PFOA-PFOS (ρ=0.41), were lower than those previously reported for 

BCERP participants in Greater Cincinnati (ρ=0.62) or the San Francisco Bay Area (ρ=0.60), 

but comparable to BCERP participants living in Northern Kentucky (ρ=0.38) (Pinney et al., 

2014). Inter-PFAS correlations are also comparable to those measured in the C-8 project 

community (Frisbee et al., 2009). While PFAS have multiple environmental sources, these 

weaker correlations suggest different PFOA exposure source(s) predominate in our 

population than the US general population.
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Isomer profiles can suggest exposure sources (De Silva and Mabury, 2006). PFAS were 

predominantly produced using electrochemical fluorination (ECF) in the US until 2002, 

when 3M ceased production. Telomerization was used by the largest remaining US PFAS 

manufacturer, DuPont (Prevedouros et al. 2006). ECF produces 70%-80% linear and 20–

30% branched PFOS and PFOA; telomerization produces linear products from linear 

feedstocks (Buck et al., 2011). Human PFOA isomer pharmacokinetics are unknown, but 

rodents eliminate branched PFOA faster than n-PFOA (De Silva et al., 2009). Taken 

together, these findings suggest our participants were predominantly exposed to 

telomerization-produced PFOA (De Silva and Mabury, 2006). However we cannot rule out 

participant exposure to ECF-produced PFOA; mean 97% n-PFOA might have resulted, at 

least in part, from preferential branched PFOA isomer excretion, and n-PFOA retention, 

before sera collection.

The trends in study participants’ measured and predicted serum PFOA mirror measured 

Ohio River water PFOA concentrations. PFAS concentrations were measured throughout the 

Ohio River Valley in September 2009 (Emery et al., 2010). Additional Ohio River PFOA 

measurements were conducted near Parkersburg, WV in 2003 (GIST, 2003) and average 

Ohio River PFOA concentrations were estimated for 1951–2003 (Paustenbach et al., 2007). 

Ohio River water PFBuS, PFHxS, PFOS, PFNA and PFDeA concentrations in 2009 were <6 

ng/L between Huntington, WV and Louisville, KY. Reported Cincinnati Ohio River water 

PFOA concentrations were 100 ng/L in 2005, 21 ng/L in 2006, and 13.1 ng/L in 2009 

(Personal communication with Greater Cincinnati Water Works; Emery et al. 2010). 2009 

Ohio River water PFOA concentrations at Huntington were 19.1 ng/L and 3.4–5.3 ng/L at 

points above Parkersburg, WV, 209 km upstream of Huntington; 2009 water PFOA 

concentrations were also low (1.48–6.22 ng/L) in Ohio River tributaries in our study area. 

Measured Ohio River PFOA concentrations at Parkersburg were 35 ng/L in 2009 (Emery et 

al., 2010) and 295 ng/L in 2003 (GIST, 2003); average estimated annual PFOA 

concentration was 690 ng/L in 1999 (Paustenbach et al., 2007). Measured PFOA 

concentrations in Ohio River Aquifer water 2002–2005 near Parkersburg were 58–4800 

ng/L. The Ohio River Aquifer is partially recharged by the Ohio River, contaminating it with 

PFOA (Paustenbach et al., 2007).

Three known industrial sources discharge PFOA into the Ohio River: DuPont’s Fort 

Washington Works and on-site landfill, Dry Run Landfill in Washington, WV, and Letart 

Landfill in Letart, WV. DuPont reported industrial discharges of approximately 150,000 lbs. 

of PFOA (as ammonium perfluorooctanoate) to the Ohio River in the 1980s, 350,000 lbs. in 

the 1990s and 75,000 lbs. 2000–2003 (Paustenbach et al., 2007). The 2004 annual releases 

were 6,000 lbs./yr., decreasing to 705 lbs./yr. in 2011 (United States Environmental 

Protection Agency, 2015b). These discharges contaminated municipal drinking water 

(Emmett et al., 2006; Paustenbach et al., 2007) and private wells (Hoffman et al., 2011) in 

the C-8 project area. Industrial discharges to Letart and Dry Run are unknown, but surface 

water PFOA concentrations were 107–40,290 ng/L for Dry Run and 154–1,960 ng/L for 

Letart (GIST, 2003). Other industrial facilities discharging PFOA into the Ohio River are 

unknown. Wastewater treatment plants (WWTPs) (Huset et al., 2008; Muller et al., 2011a) 

or non-point sources (Muller et al., 2011b) are possible PFOA sources. Ohio River water 

PFOA concentrations in 2009 increased 1–3 ng/L at WWTP outfalls, compared to 
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measurements immediately upstream (Emery et al., 2010). However, water PFOA 

concentrations are much lower (1.4–7.4 ng/L) in rivers solely contaminated by WWTPs 

(Huset et al., 2008; Muller et al., 2011a), while industrial PFAS discharges predominate over 

WWTPs in waters contaminated by both (Castiglioni et al., 2015; Valsecchi et al., 2015; Zhu 

et al., 2015). Because PFOA contamination in other waters is reported to persist hundreds of 

kilometers downstream of PFAS manufacturers (Valsecchi et al., 2015; Zhu et al., 2015), 

PFOA discharged into the Ohio River 209–666km upstream of our study area could have 

contaminated our participants’ drinking water.

Strengths/Limitations

All three study populations represented voluntary convenience samples, and therefore were 

not necessarily representative of the general population. Although the mean and median 

values of PFCs reported here do not necessarily represent general population values, our 

data certainly indicate that there was widespread exposure to PFOA among participants. We 

could not assess all exposure sources, including food, house dust or whether adult 

participants were breastfed as children. Complete occupational histories were unavailable, 

though no participants worked at PFAS–production facilities. Because we based Model 2 on 

residential addresses, not including occupational histories could result in overestimating 

water source exposure, especially in large urban areas with multiple water providers or water 

sources. This is mitigated for children, where residences and schools are more closely 

located. However, our regression models explained 44–47% of study participants’ serum 

PFOA variation without including these other exposure sources or locations. Because other 

PFAS concentrations in our study population were similar to NHANES, it is unlikely that 

high PFOA serum concentrations in our study are mainly due to food and dust exposures. 

Participants may have improperly estimated average water intake; this was mitigated by 

using visual aids for serving sizes (Chambers et al., 2000). We assumed constant reported 

water consumption in analyses; this could overestimate water consumption when 

participants were children (Kant and Graubard, 2010), and underestimate consumption when 

participants were younger adults (Kant et al., 2009). One-compartment pharmacokinetic 

models may not properly estimate serum PFOA concentrations, though trends matched 

regression analyses. Rigorous collection and processing protocols strengthen this study. 

Serum was specifically collected, processed, and stored for biospecimen analysis using 

research protocols developed by CDC. Anthropometrics were collected using similar 

protocols for all studies, data were collected prior to PFAS measurements, and 

questionnaires were repeatedly administered to BCERP and FCC cohorts, allowing for 

missing data collection and response validation.

Conclusions

Mid-Ohio River Valley residents (Huntington, WV to Louisville, KY) were likely exposed to 

PFOA, but not other PFAS, above US population background levels; serum PFOA 

concentrations were highest in the 1990s, declining in the 2000s. Serum PFOA 

concentrations are significantly associated with use of Ohio River and Ohio River Aquifer 

water. While using GAC for water treatment resulted in lower serum PFOA, it did not reduce 

concentrations to background. Municipal drinking water, probably contaminated by 
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industrial PFOA discharges 209–666km upstream of our participants, appears to be the 

primary PFOA exposure source.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Mid-Ohio River Valley (Huntington, WV to Louisville, KY) residents have 

median serum PFOA concentrations greater than the general US population; 

resident serum concentrations for other PFAAs are similar to background.

• Pharmacokinetic modeling and repeat serum measurements indicate PFOA 

concentrations were highest in the 1990s and decreased after 2000.

• Using granular activated carbon in a drinking water treatment system reduces 

serum PFOA concentrations.

• Municipal drinking water utilities with the Ohio River and Ohio River 

Aquifer as sourcewaters are major PFOA exposure sources for residents of the 

Mid-Ohio River Valley.

• PFOA discharges to the Ohio River 209–666 kilometers upstream of the study 

area are the most likely source of PFOA in the Ohio River and Ohio River 

Aquifer.
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Figure 1. The Ohio River Valley
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Figure 2. Median Serum PFAS Concentrations
Notes:

Only PFAS with >40% above LOD across all three cohorts shown

Total sample median used for NHANES data (CDC, 2015)
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Figure 3. Adjusted GM serum PFOA concentrations by water source and sample year
Notes:

Adjusted for water source, sample year, age at sample, tap water consumption, pregnancy 

status, gravidity and number of children breastfed.

*<5 participants used this water source during these years.
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